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Lecture 4 1

Midterm Exam (30 points)

• Possible date:

October 26 10:00am-1:00pm

• Location: TBA

• Ground rules:
Open book, open notes

Do all problems in Part I , do 5 out of 10 problems in Part II
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Supplementary material link

http://www.physics.uwo.ca/~lgonchar/courses/p9812/additional

Username: P9812
Password: ~vector~
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Lecture 4

4. The Single-Electron Model

References:

1. Marder, Chapters 6
2. Kittel, Chapter 6, pp.144-156
3. Ashcroft and Mermin, Chapter 8

4. Ziman, Chapter 3, pp.77-91
5. Kaxiras, Chapter 3
6. Phillips, Chapter 1

7. Ibach, Chapter 6

… or Free Electron Fermi Gas

Free electrons subject to the Pauli principle
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Approximations
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Born-Oppenheimer approximation :
nuclei treated as classical potentials; many 
electrons combined with nuclei in closed shells 
to form ions; ions treated as static potential

All electronic degrees of freedom 
eliminated; effective potentials for ions. 

Single electron approximation: Coulomb 
interaction incorporated into lattice potential 

Jellium: interacting electrons move 
in uniform positive potential 

Ions arranged in a lattice, forming periodic 
potential for single electrons. Weak ionic 
potentials justified by pseudopotentials

Free Fermi gas: Ionic potential eliminated, 
surprisingly effective for alkali metals
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Metals

• For an isolated atom the valence electrons are in the potential well due to 
the nucleus and core electrons

• As the atoms approach each other to build a crystal, the overlap of the 
atomic potentials causes the valence electrons to be in an effective potential 
that is lower than in the isolated atoms

• For metals can consider a “smooth” potential well W
• Drude’s Model (1900): an application of the kinetic theory of electron gas in

a solid; uses average energy and Maxwell-Bolzmann distribution of the 
electron velocities

• Sommerfeld theory : quantum mechanics approach to find energy and 
velocities;  uses Pauli exclusion principle to fill up the quantized states
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Important Terms

� Free electron gas
� Occupation number
� Fermi energy
� Fermi surface
� Density of states
� Fermi-Dirac Statistics and Temperature Effects
� Sommerfeld expansion
� Heat Capacity of the Electron Gas and Sommerfeld parameter
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Basic Hamiltonian

Single-electron model:
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Free electron gas: (no external potential U)
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Energy Levels in 1D

The boundary conditions are imposed by the infinite potential energy barriers:

nn
n

n dx

d

m
H ψεψψ =−=

2

22

2

h
In 1D:

0)(;0)0( == Lnn ψψ
They are satisfied by sinelike wavefunction:

LnxA n
n

n =







= λ

λ
πψ

2

1
   ;

2
sin
















−=














= x
L

n

L

n
A

dx

d
x

L

n

L

n
A

dx

d nn ππψππψ
sin   ;cos

2

2

2

The energy is given by:
22

2







=
L

n

mn

πε h

Accommodate N electrons, recall Pauli exclusion principle (n, mS=±1/2)

The Fermi energy εεεεF is defined as the energy of the topmost filled level in the 
ground state of the N electron system:
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Free Electron Gas in 3D

Apply periodic boundary conditions (period L):
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k – or reciprocal space
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Occupation number

The ground state of N electrons is build from…

…by putting two electrons into the lowest state |k|=0; 

next into all states with                 and so on 

Occupation number fk of a state indexed by 

is 1 if this one-electron state is part of the ground state, 
and 0 otherwise

,
2

L
k

π=
r

k
r

In the ground state of a system of N free electrons the occupied orbitals are 
points inside a sphere in k-space

- the energy at the surface of the sphere is the Fermi energy:
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Fermi Energy

The total number of orbitals in the sphere is   3
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Definition of Density of states, D

Density of electronic states or density of levels

Defined so that 
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Several separate functions D are all referred to as density of states

⇒ distinguish by their argument

Energy density of states D(E)
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Energy Density of States

To find D(E), note that 
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Note dimensionality effect:

• for 3D: D(E) ∝

• for 2D: D(E) ∝

• for 1D: D(E) ∝
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Experimental confirmation

Soft X-ray emission spectra :

If Al metal is bombarded by electrons with enough energy to knock a 2p-
electron from the Al core then X-rays are emitted 

Al 1s22s22p63s23p1

see Kittel
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Fermi-Dirac Statistics and Temperature Effects

Recall : in the Drude theory we used a single average energy, av. velocity, etc

Need a proper statistical approach to characterize thermal occupancy of the 
allowed quantum states. Particles with a spin of ½ obeys Fermi-Dirac
statistics

For an ideal electron gas in thermal equilibrium with a heat bath at a temperature 
T, the probability that an allowed state, with energy E, will be occupied is 
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Note: when E = 
EF,  f(E) =1/2 

f(E) Fermi function or the 
occupation probability
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Temperature Effects

At higher T : the kinetic energy of the electron gas increases as the 
temperature is increased: some energy levels are occupied which were 
vacant at absolute zero

when E-µ >> kBT; 
the exponent term is dominant’

⇒ the Boltzmann distribution
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Elements as free electron gases
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Results for Free Electrons

The Fermi wave vector kf is related to the density of electrons (n=N/V) by
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Sommerfeld Expansion

Paradox that density of states too small solved by
)( Fv TDc ε∝

Derivatives of Fermi function for various kBT

f is only nonzero over an energy range around the Fermi energy
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Sommerfeld Expansion
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Heat Capacity of the Electron Gas

Classical statistical mechanics : 

free particle heat capacity 3/2 kB (for system of N atoms – 3/2 NkB) ⇒
experimental value 0.01 ×3/2 N kB

When sample is heated, only those electrons in orbitals within an energy range 
kBT of the Fermi level are excited thermally ⇒ only a fraction of the order T/TF
can be excited thermally at temperature T

At low temperature (kBT<<EF) we can derive a quantitative expression for the 
electronic heat capacity
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Specific Heat

For non-interacting electrons at low T
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Specialize to Free Fermi Gas

As predicted, cV ∝ D (EF) T
Linear coefficient, Sommerfeld parameter

)(
)('

)(
6

2
2

F

F
BF ED

ED
TkE

πµ −=

T

cV=γ



9

Lecture 4 25

Experimental Heat Capacity of Metals

At T below both the Debye temperature and the Fermi temperature, the heat 
capacity has electron and phonon contributions:

C = γ T + A T3,

where γ (Sommerfeld parameter) and A are constants characteristic of the 
material

C /T = γ + A T2
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Comparison of free-electron estimate of 
Sommerfeld parameter with experiment

Marder, Table 6.2

Heavy fermions
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Connection with metal conductivity

Read at home:
• DC Conductivity (Ohm’s law)

• Wiedemann-Franz Law
The thermal conductivity κ is the constant of proportionality between flux of thermal energy, Q, 
(energy/area time) and the temperature gradient (temperature/distance), where the energy flows 
in the opposite direction of the temperature gradient

Q = -κ ∇ T, where 
• Frequency Dependent Conductivity 3
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