« Possible date:
October 26 10:00am-1:00pm

« Location: TBA

« Ground rules:
Open book, open notes

Midterm Exam (30 points)

Do all problems in Part I, do 5 out of 10 problems in Part Il
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4. The Single-Electron Model
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H _sz +22‘ﬁ§ R‘ ... or Free Electron Fermi Gas
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Free electrons subject to the Pauli principle
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Approximations

Born-Oppenheimer approximation

nuclei treated as classical potentials; many
electrons combined with nuclei in closed shells
to form ions; ions treated as static potential

eliminated; effective potentials for ions.

All electronic degrees of freedom ‘

[

Single electron approximation: ~ Coulomb
interaction incorporated into lattice potential

Jellium: interacting electrons move
in uniform positive potential

lons arranged in a lattice, forming periodic
potential for single electrons. Weak ionic
potentials justified by pseudopotentials

I

Free Fermi gas: lonic potential eliminated,
surprisingly effective for alkali metals
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Metals

For an isolated atom the valence electrons are in the potential well due to
the nucleus and core electrons

As the atoms approach each other to build a crystal, the overlap of the
atomic potentials causes the valence electrons to be in an effective potential
that is lower than in the isolated atoms

For metals can consider a “smooth” potential well W

Drude’s Model (1900): an application of the kinetic theory of electron gas in
a solid; uses average energy and Maxwell-Bolzmann distribution of the
electron velocities

Sommerfeld theory : quantum mechanics approach to find energy and
velocities; uses Pauli exclusion principle to fill up the quantized states

« NN

Fig. 9-1 (a) The potential in a crystal. (b) A model of this potential in which the

electrons are ina "box" of depth W
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Important Terms

Free electron gas

Occupation number

Fermi energy

Fermi surface

Density of states

Fermi-Dirac Statistics and Temperature Effects

Sommerfeld expansion

Heat Capacity of the Electron Gas and Sommerfeld parameter
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Basic Hamiltonian
|

Single-electron model:
i TP S
HW:Z[ > ‘+U(r,)}V(rj.,IN):N(rj.,,rN)
=1 m

N conduction electrons, interacting with external potential U but does not
interacting with the other conduction electrons

Find eigenfunctions ¢, (;) for single electrons obeying:

-n’0° = ~ ~
[ 3 +U(r)]w.(r)=f.z//.(r)
m

= eigenfunctions describing many particles are products of one-particle functions

Free electron gas: (no external potential U)

_hZ N

—— Y OPW(F,.. F,) = W(F,.. Fy)

2m ; 1 1 N 1 N
Lecture 4 7

S— |

Energy Levels in 1D

—

1 dy,

In 1D: Hy =— =g

U= e o

The boundary conditions are imposed by the infinite potential energy barriers:
¥,0=0y,(L)=0

They are satisfied by sinelike wavefunction:

{2 1
=Asin—x|; -nd, =L
v, su-( 0, x] 2"
2 2
a, _ A{MJCO{MXJ; ay, _ ,A{MJ Sin[MXJ
dx L L dx¥ L L

L . _w? (nmy

The energy is given by: £, =——|—
2m\ L

Accommodate N electrons, recall Pauli exclusion principle (n, mg=+1/2)

The Fermi energy ¢ is defined as the energy of the topmost filled level in the
ground state of the N electron system:

i (merr)*_#° (N
L 8

Free Electron Gas in 3D

o on*(o* 9° o - -
In 3D: _%[ﬁ+?+ﬁ}h(r) =g, (1)
Apply periodic boundary conditions (period L):
Yy, =¢(x+Ly,2); g(XY.)=¢xy+L2) ¢(xy,2) =g (xy,z+L)

Wavefunctions satisfying Schrodinger equation and boundary conditions are:
W, (F) =exp(K ),

where the components of the wavevector E are: kx = O,t—;iT;...

We can confirm that the values of k_ satisfy periodic boundary condition:
explk, (x+L)) = exp( E'IZT_H(X+ L) =expi 2" expl Emzf7 L) = expf k,%)

The eigenvalue corresponding to the wavefunction is:
2 2

gl

2m 2m

(kx2 +k? +kf) R




k — or reciprocal space

K statesdescribed by equation above occupy a cubic lattice in k or reciprocal space,

with neighbouri ng points separatedby distances of ZL—”

3 3
k spacevolume per stateis [ZT”J orv=_= %

Occupation number

The ground state of N electrons is build from...

...by putting two electrons into the lowest state |k|=0;

; oo 2n
next into all states with ‘k‘ :TY and so on

Occupation number  f, of a state indexed by K

is 1 if this one-electron state is part of the ground state,
and 0 otherwise

In the ground state of a system of N free electrons the occupied orbitals are

points inside a sphere in k-space )

h
- the energy at the surface of the sphere is the Fermi energy: & =—— kp2

2m
3 3 3
The total number of orbitals in the sphere of volume% is Yk LU 7%x2=N
3 3 (@2n)
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Fermi Energy

4 1°

The total number of orbitals in the sphereis N = - %2 =Lk
3 (2n) 37

3
£

Radius k.. can be defined as (only N dependent):

u
v

Fermi energy is related to the electron concentrati ~ on N/V!!!

o a7 (3N)
2 Y
NV oo Ve ™
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Definition of Density of states, D

2R
K

2m\® . v ~
;(Tﬂj F.=[Fk ﬁWJ.FRd(

Density of electronic states or density of levels

1
D.=2
3 @n?
Defined so that Z F, :VI D, F, dk
K

Several separate functions D are all referred to as density of states
= distinguish by their argument
Energy density of states D(E)
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Energy Density of States

The number of orbitals per unit energy range, D(E) — density states

ZF(EE):V_"D(E)F(E)dE

To find DE), note that = _Y_3 :Legrz (2m)**
3n* " 30’ n’

_dN_d(V @m**\_ vV (@m)*\3 - V (@m0
D(E)=—— =—| ~5 E¥ "0 — |= 5 CEV =Y E
® dE dE(?mz " 37 no)2 2 n®

Note dimensionality effect:

« for 3D: D(E) O

« for 2D: D(E) O

«for 1D: D(E) O
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Experimental confirmation

see Kittel
Soft X-ray emission spectra_:

If Al metal is bombarded by electrons with enough energy to knock a 2p-
electron from the Al core then X-rays are emitted

Al 1522522p63s23p?

Fig. 9-6 T

Intensity

L -8 (V)
60 72




Fermi-Dirac Statistics and Temperature Effects

Recall: in the Drude theory we used a single average energy, av. velocity, etc

Need a proper statistical approach to characterize thermal occupancy of the
allowed quantum states. Particles with a spin of %2 obeys Fermi-Dirac
statistics

For an ideal electron gas in thermal equilibrium with a heat bath at a temperature
T, the probability that an allowed state, with energy E, will be occupied is

1 f(E) Fermi function or the
ex;{ Ek’ E j+]_ occupation probability
T

FIE): kT = 0050
SLE) keT = .025u
exp[—5{& — p)): kT = .25

AtlowT (- 0K) gs

Note: whenE= 06 o
Eg, f(E) =1/2 04 I f(E) kT = 250

Temperature Effects

At higher T : the kinetic energy of the electron gas increases as the
temperature is increased: some energy levels are occupied which were
vacant at absolute zero

B
1 X
f(E)= 10 F1€): kaT = 005
ex;{E_”]ﬁL o &) kT = 0254
keT 08 epl—BLE )] ke T = 25

when E-p>> kgT;
the exponent term is dominant’
= the Boltzmann distribution
HoE
Ko T E
f(E) Dexp™ Fermi temperature:  Tg :k—F
B
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Elements as free electron gases
|
Element Z n ke &r Tr vp 7s/ao
(IO22 cm’3) (10g em ™! V) (104 K) (IO8 cms’l)
Li 1 4.60 111 4.68 543 128 327
Ag 1 5.86 1.20 5.50 6.38 1.39 3.02
Be 2 24.72 1.94 14.36 16.67 225 1.87
Al 3 18.07 175 11.66 13.53 2.02 2,07
Sn 4 14.83 1.64 10.22 11.86 1.89 222
Sb 5 16.54 1.70 10.99 12.75 197 2.14
Mn 4 32.61 213 17.28 20.05 246 1.70
Fe 2 16.90 171 11.15 12.94 1.98 212
Co 2 18.18 175 11.70 13.58 2.03 2.07
Ni 2 18.26 1.76 11.74 13.62 2.03 207




Results for Free Electrons
|

w
D)=L [ @M Jevz g g10x10% | -E eviiom
2\ h ev

The Fermi wave vector k; is related to the density of electrons (n=N/V) by

ke =(32n)" = 30gnEAT AL

Radius parameter , r, v am v
—=—rl=r, :[—]
N 3 4N

Fermi energy , E. or Fermi level

hZ
& =——k.* =364GnA%* eV
2m Can be treated as the
Fermi surface , electrons with energy E. total number of
conduction electrons
divided by the Fermi
energy
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Sommerfeld Expansion

—
Paradox that density of states too small solved by
¢, OTD(e; )

&
30
20 _ksT = 005
10

5T =025
v
0 _hsT =25

1

Derivatives of Fermi function for various kyT

fis only nonzero over an energy range around the Fermi energy

Sommerfeld Expansion
|

(H)= JH(E)T(E)dE

(H) :IH(E)dEafg...

.
<H>=LH(E)dE+§[kBT]2H'(u)+;—’;;[kBT]‘H“'(u)+...

for quantum-mechanical thermal averages at low T

Lecture 4 21




Heat Capacity of the Electron Gas

—
Classical statistical mechanics

free particle heat capacity 3/2 k; (for system of N atoms — 3/2 Nk) =
experimental value 0.01 x3/2 N kg

When sample is heated, only those electrons in orbitals within an energy range

kgT of the Fermi level are excited thermally = only a fraction of the order T/T,.
can be excited thermally at temperature T

U= [Mjm
Te

At low temperature (kg T<<E) we can derive a quantitative expression for the
electronic heat capacity

AU = ]: ED(E) f (E)dE—EjEED(E)dE
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Specific Heat

For non-interacting electrons at low T
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Specialize to Free Fermi Gas

I
H=E == (kaT) B(E,)

As predicted, ¢, /D (Eg) T
Linear coefficient, Sommerfeld parameter y= %
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Experimental Heat Capacity of Metals
|
At T below both the Debye temperature and the Fermi temperature, the heat
capacity has electron and phonon contributions:
C=yT+AT3
where y (Sommerfeld parameter) and A are constants characteristic of the
material

CiT=y +AT?

CIT=208+257T" . _—*"

-
Potassium o=

C/T, inmJ/mol K2
~
&
.
\
.

N
o

T% in K*
Figure 6 Experimental heat capacity values for potassium, plotted as C/T
versus T2 The solid points w determined with adiabatic demagnet-
ization cryostat. [After W. H. Lien and N. E. Phillips, Phys. Rev. 133, A1370 25
(1964).]

Comparison of free-electron estimate of
Sommerfeld parameter with experiment

Metal Z gy mole | K 2) Metal Z - (mJ mole™ K™7)

Expl.  Eq. (6.78) Expt.  Eq.(6.78)

O 1 165 074 Al 3 135 091

Na 1 138 109 Ga 3 060 102

K 1 208 167 In 3 166  1.23

Rb 1 263 190 Sn 4 178 141

cs 1397 222 Pb 4 299 150

Cu 1 060 050 sb 5 02 L6l

Ag 1 064 0.64 Bi 5 0008 179

Au 1 069 0.64 Mn 2 1238 1.10

Be 2 017 05 Fe 2 490  1.06

Mg 2 L6 099 UPt, 450

Ca 2 273 151 UBejs 1100

g; izg‘ :;g Heavy fermions
Marder, Table 6.2
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Connection with metal conductivity

Read at home:
« DC Conductivity (Ohm's law)

* Wiedemann-Franz Law

The thermal conductivity k is the constant of proportionality between flux of thermal energy, Q,
(energy/area time) and the temperature gradient (temperature/distance), where the energy flows
in the opposite direction of the temperature gradient

Q=-k OT,where x= LV,
« Frequency Dependent Conductivity

NG,
V3

%

Fig. 9-2 Classical relaxation
behavior shown by the real
and imaginary parts of the

]
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